#include "game.hpp" #include #include #include #include #include #include //Used to calculate ticks of the game uint64_t time_milli() { using namespace std::chrono; return duration_cast(system_clock::now().time_since_epoch()).count(); } //Default constructor without a FEN Game::Game(SDL_Window* window, SDL_Surface* surface) { this->window = window; this->surface = surface; running = false; holding_k = false; } //Construct with specific board Game::Game(SDL_Window* window, SDL_Surface* surface, std::string board_fen) { this->window = window; this->surface = surface; board = Board(board_fen); running = false; holding_k = false; } //Main loop void Game::run() { //calculates elapsed quantum and runs a tick, always draws uint64_t last_update_time = time_milli(), delta_time; uint64_t time_quantum = 1000/60; running = true; while(running) { delta_time = time_milli()-last_update_time; while(delta_time > time_quantum && running) { tick(); delta_time -= time_quantum; last_update_time += time_quantum; } draw(); } } void Game::tick() { static bool ai_lost = false; //Check for user interface SDL_Event e; while(running && SDL_PollEvent(&e) != 0) { //Pressing q or hitting close should stop the game if (e.type == SDL_QUIT || (e.type == SDL_KEYUP && e.key.keysym.sym == SDLK_q)) { running = false; } //holding K needs to be kept track of for pawn promotion between queen or knight else if (e.type == SDL_KEYUP && e.key.keysym.sym == SDLK_k) { holding_k = false; } else if (e.type == SDL_KEYDOWN && e.key.keysym.sym == SDLK_k) { holding_k = true; } //Clicking causes the selection of spaces else if (e.type == SDL_MOUSEBUTTONDOWN) { int x,y; SDL_GetMouseState(&x, &y); x/=SPRITE_SIZE; y/=SPRITE_SIZE; process_click(x,y); //Draw now because the AI turn takes a fair amount of time draw(); } } if (!ai_lost && BLACK == board.get_active_color()) { if (-1 == do_ai_move()) { ai_lost = true; } } } void Game::draw() { board.draw_board(surface); SDL_UpdateWindowSurface(window); } //Processes the click on the board void Game::process_click(int x, int y) { //Only allow clicks if its white's turn if (WHITE == board.get_active_color()) { //Get the current space and target space int current_selected_space = board.get_selected_space(); int target_selected_space = x+y*BOARD_SIZE; if (current_selected_space == -1) { //Nothing selected before, select this tile board.set_selected_space(x,y); } else { //Get the target spaces for the previously selected space std::vector target_spaces = board.get_moves_for_space(current_selected_space, true); //Move if the mouse clicked a possible target, otherwise change the selected space to the new one if (target_spaces.end() != std::find(target_spaces.begin(), target_spaces.end(), target_selected_space)) { board.do_move(current_selected_space, target_selected_space, holding_k); } else { board.set_selected_space(target_selected_space); } } } } int Game::do_ai_move() { //Thread management std::vector threads; std::mutex mut_result_check; //Best weight found and the move that describes it int best_move_weight = std::numeric_limits::min(); int best_move_from = -1; int best_move_to = -1; bool best_move_makes_queen = false; //Initial alpha weight int a = std::numeric_limits::min(); //This function only does the maximizing part of minimax, its special because we need to know what the best move was Board board_copy = Board(board); //Go through the board and for each black piece, make a thread that will minimax for(int x = 0; x < BOARD_SIZE; x++) { for(int y = BOARD_SIZE-1; y >= 0; y--) { Piece cur_piece = board.get_piece(x,y); if (cur_piece.get_team() == BLACK) { threads.push_back(std::thread([&mut_result_check, &best_move_weight, &best_move_from, &best_move_to, &best_move_makes_queen, &a, x, y, &board_copy](){ //Get the possible moves of this piece std::vector piece_moves = board_copy.get_moves_for_space(x,y, true); Piece cur_piece = board_copy.get_piece(x,y); for (unsigned int i = 0; i < piece_moves.size(); i++) { //Make a test board and do the move on it Board test_board(board_copy); test_board.do_move(x+y*BOARD_SIZE, piece_moves[i], false); //Minimax on this test board int board_value = minimax(test_board, 4, 5, a, std::numeric_limits::max(), false); //Record new bests if they are found mut_result_check.lock(); if (board_value > best_move_weight) { best_move_weight = board_value; best_move_from = x+y*BOARD_SIZE; best_move_to = piece_moves[i]; best_move_makes_queen = false; } //Update alpha for further iterations if (best_move_weight > a) { a = best_move_weight; } mut_result_check.unlock(); } })); } } } //Wait for all threads to finish for(std::thread& cur_thread : threads) { cur_thread.join(); } //Do the best found move board.do_move(best_move_from, best_move_to, best_move_makes_queen); return best_move_to; } //Regular alpha beta pruning, max depth is used to only make threads when <= 1 node from root int Game::minimax(Board current_board, int depth, int max_depth, int a, int b, bool maximizing) { if (depth == 0 || current_board.is_mate(current_board.get_active_color())) { return board_heuristic(current_board); } int best_move_weight = maximizing?std::numeric_limits::min():std::numeric_limits::max(); bool a_eject = false, b_eject = false; //Thread management std::vector threads; std::mutex mut_result_check; int finished_threads = 0; std::mutex mut_finished_threads; //Board iteration optimization int y_start=(maximizing)?(BOARD_SIZE-1):0, y_increment=(maximizing)?-1:1; //Loop board, find pieces and minimax on their moves, make threads if available for(int x = 0; x < BOARD_SIZE && !a_eject && !b_eject; x++) { for(int y = y_start; y >= 0 && y < BOARD_SIZE && !a_eject && !b_eject; y+=y_increment) { if (current_board.get_piece(x,y).get_team() == (maximizing?BLACK:WHITE)) { //Try to make a thread? if (depth == max_depth-1) { //Is a thread available? if (threads.size()-finished_threads <= 4) { threads.push_back(std::thread([&finished_threads, &mut_finished_threads, &mut_result_check, current_board, x, y, depth, max_depth, &best_move_weight, &a, &b, &a_eject, &b_eject, maximizing](){ minimax_evaluate(mut_result_check, current_board, x, y, depth, max_depth, best_move_weight, a, b, a_eject, b_eject, maximizing); mut_finished_threads.lock(); finished_threads++; mut_finished_threads.unlock(); })); } else { //Run in this thread minimax_evaluate(mut_result_check, current_board, x, y, depth, max_depth, best_move_weight, a, b, a_eject, b_eject, maximizing); } } else //Cannot make threads, run in this thread { minimax_evaluate(mut_result_check, current_board, x, y, depth, max_depth, best_move_weight, a, b, a_eject, b_eject, maximizing); } } } } //Wait for threads to finish for (std::thread& cur_thread : threads) { cur_thread.join(); } //Return best result return best_move_weight; } //Evaluation of each pieces moves through minimax void Game::minimax_evaluate(std::mutex& mut_result_check, Board current_board, int x, int y, int depth, int max_depth, int& best_move_weight, int& a, int& b, bool& a_eject, bool& b_eject, bool maximizing) { Piece cur_piece = current_board.get_piece(x,y); std::vector piece_moves = current_board.get_moves_for_space(x,y, true); if (maximizing) { for (unsigned int i = 0; i < piece_moves.size(); i++) { //Go through each move, make a test board and maximize off of it Board test_board(current_board); test_board.do_move(x+y*BOARD_SIZE, piece_moves[i], false); int board_value = minimax(test_board, depth-1, max_depth, a, b, false); mut_result_check.lock(); if (board_value > best_move_weight) { best_move_weight = board_value; } if (best_move_weight >= b) { b_eject = true; mut_result_check.unlock(); return; } if (best_move_weight > a) { a = best_move_weight; } mut_result_check.unlock(); } } else { for (unsigned int i = 0; i < piece_moves.size(); i++) { //Go through each move, make a test board and minimize off of it Board test_board(current_board); test_board.do_move(x+y*BOARD_SIZE, piece_moves[i], false); int board_value = minimax(test_board, depth-1, max_depth, a, b, true); mut_result_check.lock(); if (board_value < best_move_weight) { best_move_weight = board_value; } if (best_move_weight <= a) { a_eject = true; mut_result_check.unlock(); return; } if (best_move_weight < b) { b = best_move_weight; } mut_result_check.unlock(); } } } int Game::board_heuristic(Board current_board) { int heuristic = 0; int piece_weights[2][7] = {{-900, -90, -30, -30, -50, -10, 0}, {900, 90, 30, 30, 50, 10, 0}}; //Unknown piece weight calculation int unknown_white_count = 0; int unknown_black_count = 0; for(int x = 0; x < BOARD_SIZE; x++) { for(int y = 0; y < BOARD_SIZE; y++) { Piece cur_piece = current_board.get_piece(x,y); if (cur_piece.get_type() == NO_TYPE) { continue; } if (cur_piece.get_vis() == HIDDEN) { if (cur_piece.get_team() == WHITE) { piece_weights[WHITE][UNKNOWN] += 2*piece_weights[WHITE][cur_piece.get_type()]; unknown_white_count++; } else { piece_weights[BLACK][UNKNOWN] += 2*piece_weights[BLACK][cur_piece.get_type()]; unknown_black_count++; } } } } if (unknown_white_count != 0) { piece_weights[WHITE][UNKNOWN] /= unknown_white_count; } if (unknown_black_count != 0) { piece_weights[BLACK][UNKNOWN] /= unknown_black_count; } //Per piece weight calculation for(int x = 0; x < BOARD_SIZE; x++) { for(int y = 0; y < BOARD_SIZE; y++) { Piece cur_piece = current_board.get_piece(x,y); if (cur_piece.get_type() == NO_TYPE) { continue; } //Mark hidden pieces as unknown and not their actual type if (cur_piece.get_vis() == HIDDEN) { cur_piece = Piece(UNKNOWN, cur_piece.get_team(), SHOWN); } //Get unmodified weight int adden = piece_weights[cur_piece.get_team()][cur_piece.get_type()]; //Pawn rank bonus if (cur_piece.get_type() == PAWN) { if (cur_piece.get_team() == WHITE) { adden -= 2*(6-y); } else { adden += 2*(y-1); } } //Attackers and defenders bonus int found_attackers = current_board.get_attackers_for_space(x+y*BOARD_SIZE); if (found_attackers > 0) { adden /= 2; } else if (found_attackers < 0) { adden = 4*adden/3; } heuristic += adden; } } return heuristic; }